Underlying Topography Estimation over Forest Areas Using High-Resolution P-Band Single-Baseline PolInSAR Data

نویسندگان

  • Haiqiang Fu
  • Jianjun Zhu
  • Changcheng Wang
  • Huiqiang Wang
  • Rong Zhao
چکیده

This paper discusses the potential and limitations of high-resolution P-band polarimetric synthetic aperture radar (SAR) interferometry (PolInSAR) in underlying topography estimation over forest areas. Time-frequency (TF) analysis in the azimuth direction is utilized to separate the ground scattering contribution from the total PolInSAR signal, without the use of any physical model, because the P-band PolInSAR data have a significant penetration depth and sufficient observation angle interval. To achieve this goal, a one-dimensional polynomial fitting (PF) method is proposed for correcting the residual motion error (RME). The Krycklan catchment test site, which is covered with pine forest, was selected to test the performance of the digital elevation model (DEM) inversion. The results show that the PF method can correct the RMEs for the sub-look interferograms well. When compared to the existing line-fit method, the TF+PF method can provide a more accurate DEM (the accuracy is improved by 26.9%). Moreover, the performance of the DEM inversion is free from the random-volume-over-ground assumption.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-stage inversion improvement for forest height estimation using dual-PolInSAR data

This paper addresses an algorithm for forest height estimation using single frequency single baseline dual polarization radar interferometry data. The proposed method is based on a physical two layer volume over ground model and is represented using polarimetric synthetic aperture radar interferometry (PolInSAR) technique. The presented algorithm provides the opportunity to take advantages of t...

متن کامل

The Specificity of P Band Polinsar Data over Vegetation

RESUME A polarimetric and PolInSAR analysis has been conducted on the Nezer forest (Southern France) at L and P band on high resolution SAR data acquired with the ONERA RAMSES system in January 2004. The dataset was investigated for its potential for retrieval of forest parameters from SAR data using three different techniques: • Radiometric inversion from the cross-polarized term, • PolInSAR i...

متن کامل

A Modified Dual-Baseline PolInSAR Method for Forest Height Estimation

This paper investigates the potentials and limitations of a simple dual-baseline PolInSAR (DBPI) method for forest height inversion. This DBPI method follows the classical three-stage inversion method’s idea used in single baseline PolInSAR (SBPI) inversion, but it avoids the assumption of the smallest ground-to-volume amplitude ratio (GVR) by employing an additional baseline to constrain the i...

متن کامل

Forest height estimation from mountain forest areas using general model–based decomposition for polarimetric interferometric synthetic aperture radar images

The estimation of forest parameters over mountain forest areas using polarimetric interferometric synthetic aperture radar (PolInSAR) images is one of the greatest interests in remote sensing applications. For mountain forest areas, scattering mechanisms are strongly affected by the ground topography variations. Most of the previous studies in modeling microwave backscattering signatures of for...

متن کامل

Estimation of Pine Forest Height and Underlying DEM Using Multi-Baseline P-Band PolInSAR Data

On the basis of the Gaussian vertical backscatter (GVB) model, this paper proposes a new method for extracting pine forest height and forest underlying digital elevation model (FUDEM) from multi-baseline (MB) P-band polarimetric-interferometric radar (PolInSAR) data. Considering the linear ground-to-volume relationship, the GVB is linked to the interferometric coherences of different polarizati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Remote Sensing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017